在锡膏印刷过程中,印刷机是达到所希望的印刷品质的关键。今天可购买到的丝印机分为两种主要类型:实验室与生产。每个类型有进一步的分类,因为每个公司希望从实验室与生产类型的印刷机得到不同的性能水平。例如,一个公司的研究与开发部门(R&D)使用实验室类型制作产品原型,而生产则会用另一种类型。还有,生产要求可能变化很大,取决于产量。因为激光切割设备是不可能分类的,最好是选择与所希望的应用相适应的丝印机。
在手工或半自动印刷机中,锡膏是手工地放在模板/丝网上,这时印刷刮板(squeegee)处于模板的另一端。在自动印刷机中,锡膏是自动分配的。在印刷过程中,印刷刮板向下压在模板上,使模板底面接触到电路板顶面。当刮板走过所腐蚀的整个图形区域长度时,锡膏通过模板/丝网上的开孔印刷到焊盘上。
在锡膏已经沉积之后,丝网在刮板之后马上脱开(snap off),回到原地。这个间隔或脱开距离是设备设计所定的,大约0.020"~0.040"。脱开距离与刮板压力是两个达到良好印刷品质的与设备有关的重要变量。
如果没有脱开,这个过程叫接触(on-contact)印刷。当使用全金属模板和刮刀时,使用接触印刷。非接触(off-contact)印刷用于柔性的金属丝网。
刮板(squeegee)类型
刮板的磨损、压力和硬度决定印刷质量,应该仔细监测。对可接受的印刷品质,刮板边缘应该锋利和直线。刮板压力低造成遗漏和粗糙的边缘,而刮板压力高或很软的刮板将引起斑点状的(smeared)印刷,甚至可能损坏刮板和模板或丝网。过高的压力也倾向于从宽的开孔中挖出锡膏,引起焊锡圆角不够。
常见有两种刮板类型:橡胶或聚氨酯(polyurethane)刮板和金属刮板。当使用橡胶刮板时,使用70-90橡胶硬度计(durometer)硬度的刮板。当使用过高的压力时,渗入到模板底部的锡膏可能造成锡桥,要求频繁的底部抹擦。为了防止底部渗透,焊盘开口在印刷时必须提供密封(gasketing)作用。这取决于模板开孔壁的粗糙度。
金属刮刀也是常用的。随着更密间距元件的使用,金属刮刀的用量在增加。它们由不锈钢或黄铜制成,具有平的刀片形状,使用的印刷角度为30~45°。一些刮刀涂有润滑材料。因为使用较低的压力,它们不会从开孔中挖出锡膏,还因为是金属的,它们不象橡胶刮板那样容易磨损,因此不需要锋利。它们比橡胶刮板成本贵得多,并可能引起模板磨损。
使用不同的刮板类型在使用标准元件和密脚元件的印刷电路装配(PCA)中是有区分的。锡膏量的要求对每一种元件有很大的不同。密间距元件要求比标准表面贴装元件少得多的焊锡量。焊盘面积和厚度控制锡膏量。
一些工程师使用双厚度的模板来对密脚元件和标准表面贴装焊盘施用适当的锡膏数量。其它工程师采用一种不同的方法 - 他们使用不需要经常锋利的更经济的金属刮刀。用金属刮刀更容易防止锡膏沉积量的变化,但这种方法要求改良的模板开孔设计来防止在密间距焊盘上过多的锡膏沉积。这个方法在工业上变得更受欢迎,但是,使用双厚度印刷的橡胶刮板也还没有消失。
模板(stencil)类型
重要的印刷品质变量包括模板孔壁的精度和光洁度。保存模板宽度与厚度的适当的纵横比(aspect ratio)是重要的。推荐的纵横比为1.5。这对防止模板阻塞是重要。一般,如果纵横比小于1.5,锡膏会保留在开孔内。除了纵横比之外,如IPC-7525《模板设计指南》所推荐的,还要有大于0.66的面积比(焊盘面积除以孔壁面积)。IPC-7525可作为模板设计的一个良好开端。
制作开孔的工艺过程控制开孔壁的光洁度和精度。有三种常见的制作模板的工艺:化学腐蚀、激光切割和加成(additive)工艺。
1)化学腐蚀(chemically etched)模板
金属模板和柔性金属模板是使用两个阳性图形通过从两面的化学研磨来蚀刻的。在这个过程中,蚀刻不仅在所希望的垂直方向进行,而且在横向也有。这叫做底切(undercutting) - 开孔比希望的较大,造成额外的焊锡沉积。因为50/50从两面进行蚀刻,其结果是几乎直线的孔壁,在中间有微微沙漏形的收窄。
因为电蚀刻模板孔壁可能不平滑,电抛光,一个微蚀刻工艺,是达到平滑孔壁的一个方法。另一个达到较平滑孔壁的方法是镀镍层(nickel plating)。抛光或平滑的表面对锡膏的释放是好的,但可能引起锡膏越过模板表面而不在刮板前滚动。这个问题可通过选择性地抛光孔壁而不是整个模板表面来避免。镀镍进一步改善平滑度和印刷性能。可是,它减小了开孔,要求图形调整。
2)激光切割(laser-cut)模板
激光切割是另一种减去(subtractive)工艺,但它没有底切问题。模板直接从Gerber数据制作,因此开孔精度得到改善。数据可按需要调整以改变尺寸。更好的过程控制也会改善开孔精度。激光切割模板的另一个优点是孔壁可成锥形。化学蚀刻的模板也可以成锥形,如果只从一面腐蚀,但是开孔尺寸可能太大。板面的开口稍微比刮板面的大一点的锥形开孔(0.001"~0.002",产生大约2°的角度),对锡膏释放更容易。
激光切割可以制作出小至0.004"的开孔宽度,精度达到0.0005",因此很适合于超密间距(ultra-fine-pitch)的元件印刷。激光切割的模板也会产生粗糙的边缘,因为在切割期间汽化的金属变成金属渣。这可能引起锡膏阻塞。更平滑的孔壁可通过微蚀刻来产生。激光切割的模板如果没有预先对需要较薄的区域进行化学腐蚀,就不能制成台阶式多级模板。激光一个一个地切割每一个开孔,因此模板成本是要切割的开孔数量而定。
3)电铸成型(electroformed)模板
制作模板的第三种工艺是一种加成工艺,最普遍地叫做电铸成型。在这个工艺中,镍沉积在铜质的阴极心上以形成开孔。一种光敏干胶片叠层在铜箔上(大约0.25"厚度)。胶片用紫外光通过有模板图案的遮光膜进行聚合。经过显影后,在铜质心上产生阴极图案,只有模板开孔保持用光刻胶(photoresist)覆盖。然后在光刻胶的周围通过镀镍形成了模板。在达到所希望的模板厚度后,把光刻胶从开孔除掉。电铸成型的镍箔通过弯曲从铜心上分开 - 一个关键的工艺步骤。箔片准备好装框,制作模板的其它步骤。
电铸成型台阶式模板可以做得到,但成本增加。由于可达到精密的公差,电铸成型的模板提供良好的密封作用,减少了模板底面的锡膏渗漏。这意味着模板底面擦拭的频率显著地降低,减少潜在的锡桥。
结论
化学腐蚀和激光切割是制作模板的减去工艺。化学蚀刻工艺是最老的、使用最广的。激光切割相对较新,而电铸成型模板是最新时兴的东西。
为了达到良好的印刷结果,必须有正确的锡膏材料(黏度、金属含量、最大粉末尺寸和尽可能最低的助焊剂活性)、正确的工具(印刷机、模板和刮刀)和正确的工艺过程(良好的定位、清洁拭擦)的结合。
吞吐量
吞吐量定义为:在给定的时间周期内,可以生产出多少合格的印刷
电路板。
影响一条
SMT生产线产量的因素是多种多样的,经常提到的一个因素是锡膏
印刷设备的周期。过去,“机器周期”用作主要设备生产吞吐量的一个重要指标,但对一台模板
印刷机或其它电子制造设备来说,它仅仅是量度真实产量的一个因素。电子制造业经常交换使用周期和吞吐量两个术语,事实上,它们在机器性能的量度工作中是两种不同的因素。
周期
周期的定义是机器可以完成的
电路板的装卸、对位等基本功能任务的速度。一般包含以下内容:电路板进出机器的运动、电路板按已定目标(模板基准标记)进行校正、电路板运动到其必须的位置,以及电路板传送到下道工序的时间。机器主要功能的实际完成(在本例中是锡膏的实际印刷)一般要依赖于定义机器周期的各个公认元素。大多数情况下,锡膏印刷设备的供应商只把机器的周期定义为印刷电路板送进、送出机器,以及印刷电路板按已定目标(模板基准标记)校正的过程。
很多时候真正的印刷动作并不包括在锡膏印刷机的周期内。印刷动作在很大程度上依赖于使用的锡膏和生产的基板尺寸。大多数现代锡膏印刷设备刮板的的运动速度可以远远快于实际锡膏印刷的要求。许多客户仍在使用那些必须缓慢印制的锡膏,这经常成为锡膏印刷工艺周期的一个主要时间因素。正是由于材料会产生很多影响变量,设备制造商便将周期的定义内容缩减为自己可控的那些项目。
我们应该把机器周期定义考虑得更宽泛一些,以使更好地理解机器吞吐量与设备利用率。更宽泛的定义除了包括上述所有功能,还需加上机器执行的所有“间接”(overhead)功能。“间接”功能定义是:不直接包括在电路板传送和准确印刷锡膏的实际操作中的所有其它机器功能。大多数的现代锡膏
印刷机都可以执行许多“间接”功能,如模板清洗、二维(2D)印后检验、模板上锡膏的涂覆等,有些更先进的系统甚至提供对锡膏印刷的三维(3D)印后检验、慢速脱离(snap-off)、定位支撑针的安装,以及对统计过程控制和其它管理与质量数据的采集功能,作为机器的附加功能。
当采用机器周期的这种扩展定义时,很难对锡膏印刷机设备作出比较,因为一般情况下这些功能代替了手工和离线的保证工艺质量功能。必须花时间来彻底理解每个“间接”功能如何完成自己的任务,才能够对机器的性能作出正确的评估。在证明某项功能的价值时,机器执行间接任务的速度当然是主要考虑因素,同时,还必须考虑机器将以怎样的精确度和可重复性执行间接操作。许多印刷设备能够并行地执行几个“间接”功能,这样不会由于增加功能造成吞吐量的实际损失。如果机器可以并行地执行两、三个“间接”功能,并且仍能提供“最佳”的精确度和可重复性,则该机器(按照上述扩展定义方法)就具有最快的机器周期。
如何有效评估印刷机的实际吞吐量?
为了有效评估一台印刷机的实际吞吐量,必须考虑以下变量:
周期,及测量
电路板上板、定位、送至印刷高度、回到传送高度、下板的过程。但不包括实际的印刷动作。
印刷参数,包括:施加的力量、刮板运动及速度参数等。这些参数受电路板尺寸、元件密度、元件间距以及锡膏构成(由于不同的流变学特性,大型元件一般意味着不同的速度)的影响。
锡膏印刷周期的优化需要使用可以快速印刷的锡膏。电路路尺寸越大,实际印刷动作对周期长短的影响就越重要。如果我们的锡膏每秒只能印刷 2 英寸,用它加工一块 12 英寸电路板的过程要耗时 6 秒种。如果换用一台每秒印刷 8 英寸的锡膏,则印刷时间可以降低为 1.5 秒。
是否使用刮板或封闭印刷头?
封闭印刷头节省了将锡膏涂覆在模板上的时间。即使使用了自动锡膏涂覆系统,机器也要花时间将新的锡膏涂在模板上。当要从一种电路板转换到另一种电路板时,封闭印刷头更显示出独有的优势。因为所有的锡膏都已经装在封闭印刷头中。在清洁模板前,只需从模板上刮去很少量的锡膏。并且由于下一种产品的锡膏已经装在印刷头中了,锡膏的浪费量也很少。
锡膏涂覆:在使用刮板时,如何向模板涂覆锡膏。影响它的因素包括涂覆方法(人工或自动涂覆),以及开孔密度和PCB的尺寸,这些将决定锡膏补充的频率。
操作软件的“易用性”
软件必须易于使用。所有可控功能的操作都必须易于理解。软件界面必须尽可能直观以简化操作。这有助于机器的组装、转换以及正常运转,对系统长期生产的产量有很大影响。
模板清洗频率与方法。
所有的锡膏印刷工艺都需要按某种频度来清洁模板。模板擦拭的频度是多种变量的函数,包括模板设计、印刷电路板的最后表面处理(热风整平 HASL、浸银、浸镍/金、有机可焊性保护层
OSP,等)、印刷过程中电路板的支持,等。即使是最优设计的锡膏印刷工艺也必须进行模板清洁,所以我们必须对某台机器如何完成这一功能作出评估。所有的现代锡膏印刷设备均提供模板清洗功能。必须清楚是否需要在执行模板清洁功能时使用真空或溶剂来协助清洗工作。
模板至电路板的慢速脱离距离与速度。所有系统都各不相同,由于密度越来越高,有些 PCB 板需要更慢的分离速度,以改善模板与沉积锡膏的分离。
印后检验
大多数现代锡膏印刷设备都提供二维(2D)印后检验功能,有些还可以为关键设备的锡膏沉积提供三维(3D)印后检验功能。所有的 2D 和 3D 印后检验系统的工作各不相同,所以,要了解可测量的各个变量、方法,以及懂得如何使用结果数据,这对评估附加工作的价值非常重要。
装配与转换方案,包括相关的 MTTA。
当从一种产品变更为另一种产品时,需要进行大量的锡膏印刷设备的转换工作。许多锡膏印刷流程在一天里要进行数次转换。必须清楚你的设备要花多少时间才能从一种产品转换到另一种产品。哪些产品转换变量对机器的优化运行特别重要?
如上所述,吞吐量是在给定时间周期内装配完成的合格电路板数量。工艺质量对实现最高吞吐量至关重要,因此必须尽可能“实时”地了解工艺运行的情况。我们不能在生产运行结束后才通过发现的缺陷进行补救式的优化工作。我们必须提倡一种“前瞻”式的生产,防止形成一种只被用来发现缺陷的“反应”式生产。
清除方法
问题:可以用小刮铲来将误印的锡膏从板上去掉吗?这会不会将锡膏和小锡珠弄到孔里和小的缝隙里?解答:用小刮铲刮的方法来将锡膏从误印的板上去掉可能造成一些问题。一般可行的办法是将误印的板浸入一种兼容的溶剂中,如加入某种添加剂的水,然后用软毛刷子将小锡珠从板上去除。宁愿反复的浸泡与洗刷,而不要猛烈的干刷或铲刮。在锡膏印刷之后,操作员等待清洗误印的时间越长,越难去掉锡膏。误印的板应该在发现问题之后马上放入浸泡的溶剂中,因为锡膏在干之前容易清除。
避免用布条去抹擦,以防止锡膏和其他污染物涂抹在板的表面上。在浸泡之后,用轻柔的喷雾冲刷经常可以帮助去掉不希望有的锡膏。同时还推荐用热风干燥。如果使用了卧式模板清洗机,要清洗的面应该朝下,以允许锡膏从板上掉落。
照例,注意一些细节可以消除不希望有的情况,如锡膏的误印和从板上清除为固化的锡膏。在所希望的位置沉积适当数量的锡膏是我们的目标。弄脏了的工具、干涸的锡膏、模板与板的不对位,都可能造成在模板底面甚至装配上有不希望有的锡膏。在印刷工艺期间,在印刷周期之间按一定的规律擦拭模板。保证模板坐落在
焊盘上,而不是在阻焊层上,以保证一个清洁的锡膏印刷工艺。在线的、实时的锡膏检查和元件贴装之后回流之前的检查,都是对减少在焊接发生之前工艺缺陷有帮助的工艺步骤。
对于密间距(fine-pitch)模板,如果由于薄的模板横截面弯曲造成引脚之间的损伤,它会造成锡膏沉积在引脚之间,产生印刷缺陷和/或短路。低粘性的锡膏也可能造成印刷缺陷。例如,印刷机运行温度高或者刮刀速度高可以减小锡膏在使用中的粘性,由于沉积过多锡膏而造成印刷缺陷和桥接。
总的来讲,对材料缺乏足够的控制、锡膏沉积的方法和设备是在
回流焊接工艺中缺陷的主要原因。
什么类型的装配板的分板(depaneling)设备提供最好的结果?
有几种分板系统提供各种将装配板分板的技术。照例,在选择这种设备时应该考虑许多因素。不管有没有定线(routing)、锯割(sawing)或冲切(blanking)用来将单个的板从组合板分开,分板过程中稳定的支撑是最重要的因素。没有支撑,产生的应力可能损伤基板和焊接点。扭曲板、或在分板期间给装配产生应力都可能造成隐藏或明显的缺陷。虽然锯割经常可以提供最小的间隙,但是用工具的剪切或冲切可以提供较清洁的、更加受控的结果。
为了避免元件损伤,许多装配商企图在要求分板的时候将元件焊接点保持在距离板的边缘至少5.08mm。敏感的陶瓷电容或
二极管可能要求格外的小心与考虑。